SEARCHING FOR/ ECCENTRICITY ISOBEL ROMERO-SHAW PAULLASKY ERICTHRANE

BACKGROUND

Binary black holes are thought to form primarily via two channels: **isolated** and **dynamical**.

QUASI-CIRCULAR

ECCENTRIC

	quasi-circular ikelihood	ME	THC	DD
quasi-circu posterior	lar $p_{\emptyset}(\theta d) =$	$= \frac{\mathcal{L}_{\phi}(d \theta) \pi}{2}$	(heta)	
$\begin{pmatrix} 1 \end{pmatrix}$	Compute p e quick quase model	یر osteriors us i-circular w	sing v aveform	
2	For every sa transform s likelihood generate e	ample, use campling fro over eccent centricity	inverse om 1D tricity to value	random number
3	Reweight in eccentricity likelihood	nitial poster y-marginali	riors using ised centricity-	

cumulative

likelihood

- The formation channel of a binary can be encoded in its masses, spins, and eccentricity. These properties are imprinted on its gravitational wave signal.
- Binary properties are measured by comparing signals to thousands of templates. Eccentricity is hard to measure, because eccentric templates are slow to generate.
- We use **likelihood reweighting** to measure the binary eccentricity of ten events from the first Gravitational Wave Transient Catalogue of LIGO and Virgo.

likelihood

60

ISOLATED MERGERS FORMATION Stellar binaries evolve into black hole binaries.

posterior

DYNAMICAL MERGERS FORMATION Black holes form bound pairs during interactions in star clusters.

RESULTS

2.....

expect ~ 5% of globular cluster mergers to have $e \ge 0.1$ at 10Hz

0.

0.1

0.08

0.0b

10Hz

ntricity at

no event with $e \ge 0.1$ in the first Gravitational Wave **Transient Catalogue of LIGO** and Virgo

> need ~ 20 events to make confident claims about

GW151012 GW151226

GW170104

GW170608

GW170729

MERGE MECHANISM Binaries tighten & merge due to the emission of gravitational waves. **BINARY PROPERTIES** Masses below ~ $50 M_{\odot}$ **Spins** aligned with binary angular

momentum vector **Eccentricity** negligible at 10Hz

MERGE MECHANISM Binaries driven to merge through dynamical interactions & gravitational wave emission. **BINARY PROPERTIES Masses** can be $> 50 M_{\odot}$ **Spins** isotropically distributed & misaligned **Eccentricity** can be \geq 0.1 at 10Hz /

Are YOU a dynamically-formed BBH?

At least one component in the upper mass gap?

Components have **misaligned** spins?

Binary eccentricity

